
An Alternative Approach to Evidential
Network Construction
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Abstract We present an alternative approach to belief network construc-
tion based on operator of composition of basic assignments. We show that
belief networks constructed in this way have similar structural properties
to Bayesian networks in contrary to previously proposed directed evidential
networks by Ben Yaghlane at al.

1 Introduction

Bayesian networks are at present the most popular representative of so-called
graphical Markov models. Therefore it is not surprising that some attempts
to construct an analogy of Bayesian networks have also been made in other
frameworks as e.g. in possibility theory [4] or evidence theory [3].

In this paper we bring an alternative to [3], which does not seem to us to be
satisfactory, as graphical tools well-known from Bayesian networks are used
in different sense. Our approach is based on previously introduced operator
of composition for basic assignments [7, 6]. The evidential network is recon-
structed from the resulting compositional model. We concentrate ourselves to
structural properties of the network, the problem of definition of conditional
beliefs is not solved here.

The paper is organized as follows. After a brief summary of basic notions
from evidence theory (Section 2), in Section 3 we recall the definition of
the operator of composition (and its basic properties) and in Section 4 af-
ter recalling perfect sequences of basic assignments we present an algorithm
for transformation of a perfect sequence into an evidential network. We also
demonstrate, through a simple example, in which sense our approach is su-
perior to the previous one [3].

Institute of Information Theory and Automation of the ASCR, 182 08 Prague, Czech
Republic, e-mail: vejnar@utia.cas.cz

1



2 J. Vejnarová

2 Basic Notions

In this section we will briefly recall basic concepts from evidence theory [9]
concerning sets, set functions and (conditional) independence.

2.1 Set Projections and Joins

For an index set N = {1,2, . . . ,n} let {Xi}i∈N be a system of variables, each Xi

having its values in a finite set Xi. In this paper we will deal with multidi-
mensional frame of discernment XN = X1 ×X2 × . . .×Xn, and its subframes
(for K ⊆ N) XK = �i∈KXi. When dealing with groups of variables on these
subframes, XK will denote a group of variables {Xi}i∈K throughout the paper.

A projection of x = (x1,x2, . . . ,xn) ∈ XN into XK will be denoted x↓K , i.e.,
for K = {i1, i2, . . . , ik}

x↓K = (xi1 ,xi2 , . . . ,xik) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will denote a projection of A
into XM:1

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.
In addition to the projection, in this text we will also need an opposite

operation, which will be called a join. By a join2 of two sets A ⊆ XK and
B ⊆ XL (K,L ⊆ N) we will understand a set

A �� B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that for any C ⊆ XK∪L naturally C ⊆C↓K ��C↓L, but generally
C �=C↓K ��C↓L.

2.2 Set Functions

In evidence theory [9] (or Dempster-Shafer theory) two measures are used to
model the uncertainty: belief and plausibility measures (the latter one will
not be used in this paper). Both of them can be defined with the help of
another set function called a basic (probability or belief) assignment m on
XN , i.e., m : P(XN)−→ [0,1],

where P(XN) is power set of XN and ∑A⊆XN
m(A) = 1. Furthermore, we as-

sume that m( /0) = 0. A set A ∈ P(XN) is a focal element if m(A)> 0.
Belief measure is defined for any A ⊆ XN by the equality

1 Let us remark that we do not exclude situations when M = /0. In this case A↓ /0 = /0.
2 This term and notation are taken from the theory of relational databases [1].
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Bel(A) = ∑
B⊆A

m(B). (1)

For a basic assignment m on XK and M ⊂ K, a marginal basic assignment
of m on XM is defined (for each A ⊆ XM):

m↓M(A) = ∑
B⊆XK :B↓M=A

m(B).

Having two basic assignments m1 and m2 on XK and XL, respectively
(K,L ⊆ N), we say that these assignments are projective if

m↓K∩L
1 = m↓K∩L

2 ,

which occurs if and only if there exists a basic assignment m on XK∪L such that
both m1 and m2 are marginal assignments of m. Let us note that according
to the convention m↓ /0 ≡ 1 for arbitrary basic assignment m, m1 and m2 are
projective whenever K ∩L = /0.

2.3 Independence

When constructing graphical models in any framework, (conditional) inde-
pendence concept plays an important role. In evidence theory the most com-
mon notion of independence is that of random set independence [5]: Let m
be a basic assignment on XN and K,L ⊂ N be disjoint. We say that groups of
variables XK and XL are independent with respect to basic assignment m (in
notation K ⊥⊥ L [m]) if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L)

for all A ⊆ XK∪L for which A = A↓K ×A↓L, and m(A) = 0 otherwise.
This notion can be generalized in various ways [10, 2, 11]; the concept

of conditional non-interactivity XK ⊥m XL|XM from [2], based on conjunction
combination rule, is used for construction of directed evidential networks in
[3]. In this paper we will use the concept introduced in [11, 6], as we consider
it more suitable (the arguments can be found in [11]).

Definition 1. Let m be a basic assignment on XN and K,L,M ⊂ N be dis-
joint, K �= /0 �= L. We say that groups of variables XK and XL are conditionally
independent given XM with respect to m (and denote it by K ⊥⊥ L|M [m]), if
the equality

m↓K∪L∪M(A) ·m↓M(A↓M) = m↓K∪M(A↓K∪M) ·m↓L∪M(A↓L∪M) (2)

holds for any A ⊆ XK∪L∪M such that A = A↓K∪M �� A↓L∪M, and m(A) = 0 oth-
erwise.

It has been proven in [11] that this conditional independence concept sat-
isfies so-called semi-graphoid properties taken as reasonable to be valid for
any conditional independence concept (see e.g. [8]).



4 J. Vejnarová

3 Operator of Composition and Its Basic Properties

Operator of composition of basic assignments was introduced in [7] in the
following way.

Definition 2. For two arbitrary basic assignments m1 on XK and m2 on XL

a composition m1 �m2 is defined for all C ⊆ XK∪L by one of the following
expressions:

[a] if m↓K∩L
2 (C↓K∩L)> 0 and C =C↓K ��C↓L then

(m1 �m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C =C↓K ×XL\K then

(m1 �m2)(C) = m1(C
↓K);

[c] in all other cases
(m1 �m2)(C) = 0.

Its basic properties are contained in the following lemma proven in [7].

Lemma 1. For arbitrary two basic assignments m1 on XK and m2 on XL the
following properties hold true:

(i) m1 �m2 is a basic assignment on XK∪L,

(ii) (m1 �m2)
↓K = m1,

(iii) m1 �m2 = m2 �m1 ⇐⇒ m↓K∩L
1 = m↓K∩L

2 .

From these basic properties one can see that operator of composition is
not commutative in general, but it preserves first marginal (in case of pro-
jective basic assignments both of them). In both these aspects it differs from
conjunctive combination rule. Furthermore, operator of composition is not
associative and therefore its iterative applications must be made carefully, as
we will see in the next section.

A lot of other properties possessed by the operator of composition can
be found in [6, 7], nevertheless here we will confine ourselves to the follow-
ing theorem (proven in [6]) expressing the relationship between conditional
independence and operator of composition.

Theorem 1. Let m be a joint basic assignment on XM, K,L ⊆ M. Then (K \
L)⊥⊥ (L\K)|(K∩L) [m] if and only if

m↓K∪L(A) = (m↓K �m↓L)(A)

for any A ⊆ XK∪L.
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4 Belief Network Generated by a Perfect Sequence

Now, let us consider a system of low-dimensional basic assignments m1,m2,
. . . , mn defined on XK1 ,XK2 , . . . ,XKn , respectively. Composing them together
by multiple application of the operator of composition, one gets multidimen-
sional basic assignments on XK1∪K2∪...∪Kn . However, since we know that the
operator of composition is neither commutative nor associative, we have to
properly specify what “composing them together” means.

To avoid using too many parentheses let us make the following convention.
Whenever we put down the expression m1 �m2 � . . . �mn we will understand
that the operator of composition is performed successively from left to right:3

m1 �m2 � . . . �mn = (. . . ((m1 �m2)�m3)� . . .)�mn. (3)

Therefore, multidimensional model (3) is specified by an ordered sequence of
low-dimensional basic assignments — a generating sequence m1,m2, . . . ,mn.

4.1 Perfect Sequences

From the point of view of artificial intelligence models used to represent
knowledge in a specific area of interest, a special role is played by the so-
called perfect sequences, i.e., generating sequences m1,m2, . . . ,mn, for which

m1 �m2 = m2 �m1,

m1 �m2 �m3 = m3 � (m1 �m2),

...

m1 �m2 � . . . �mn = mn � (m1 � . . . �mn−1).

The property explaining why we call these sequences “perfect” is expressed
by the following assertion proven in [6].

Theorem 2. A generating sequence m1,m2, . . . ,mn is perfect if and only if all
m1,m2, . . . ,mn are marginal assignments of the multidimensional assignment
m1 �m2 � . . . �mn:

(m1 �m2 � . . . �mn)
↓Kj = mj,

for all j = 1, . . . ,n.

3 Naturally, if we want to change the ordering in which the operators are to be
performed we will do so using parentheses.
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4.2 Reconstruction of a Belief Network

Having a perfect sequence m1,m2, . . . ,mn (m� being the basic assignment of
XK�

), we first order all the variables for which at least one of the basic as-
signments m� is defined in such a way that first we order (in an arbitrary
way) variables for which m1 is defined, then variables from m2 which are not
contained in m1, etc.

4 Finally we have

{X1,X2,X3, . . . ,Xk}= {Xi}i∈K1∪...∪Kn .

Then we get a graph of the constructed belief network in the following way:

1. the nodes are all the variables X1,X2,X3, . . . ,Xk;
2. there is an edge (Xi → Xj) if there exists a basic assignment m� such that

both i, j ∈ K�, j �∈ K1 ∪ . . .∪K�−1 and either i ∈ K1 ∪ . . .∪K�−1 or i < j.

Evidently, for each j the requirement j ∈ K�, j �∈ K1 ∪ . . . ∪K�−1 is met
exactly for one � ∈ {1, . . . ,n}. It means that all the parents of node Xj must
be from the respective set {Xi}i∈K�

and therefore the necessary conditional
belief function Bel(Xj|Xpa( j)) can easily be computed from basic assignment
m� via (1) and some (not yet specified) conditioning rule. As far as we know,
the use of a conditioning rule is still not fixed in evidence theory, and therefore
we leave this question open for the present.

It is also evident, that if both i and j are in the same basic assignment
and not in previous ones, then the direction of the arc depends only on
the ordering of the variables. This might lead to different independences,
nevertheless, the following theorem sets forth that any of them is induced by
the perfect sequence.

Theorem 3. For a belief network defined by the above procedure the following
independence statements are satisfied for any j = 2, . . .k:

{ j} ⊥⊥ ({i < j} \ pa( j)) | pa( j). (4)

Proof. Let j ∈ K�, j �∈ K1 ∪ . . .∪K�−1. Due to the fact that

m1 �m2 � . . . �m�−1 �m� = (· · · (m1 �m2)� · · ·�m�−1)�m�

and Theorem 1 we have that

K� \ (K1 ∪ . . .∪K�−1) ⊥⊥ (K1 ∪ . . .∪K�−1)\K� |K�∩ (K1 ∪ . . .∪K�−1) . (5)

It is evident that (K1 ∪ . . .∪K�−1)\K� = {i < j} \ pa( j), let us denote it by L.
Now, there are two possibilities: either K�∩ (K1 ∪ . . .∪K�−1) = pa( j) (if j does
not have any parents appearing first in K�) or K� ∩ (K1 ∪ . . .∪K�−1) � pa( j)
(otherwise).

4 Let us note that variables X1,X2, . . . ,Xk may be ordered arbitrarily, nevertheless, for
the above ordering proof of Theorem 3 is simpler than in the general case.
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In the first case either K�\(K1∪. . .∪K�−1) = { j} and we immediately obtain
(4), or K� \ (K1 ∪ . . .∪K�−1) � { j} and (4) follows from (5) due to K ∪M ⊥⊥
L|I [m] ⇒ K ⊥⊥ L|I [m] (following for any mutually disjoint sets I,K,L,M from
semi-graphoid properties), where K = { j},M = K� \ (K1 ∪ . . .∪K�−1)\ { j} and
I = K�∩ (K1 ∪ . . .∪K�−1) = pa( j).

In the latter case, we start by application of the implication K ∪M ⊥⊥
L|I [m] ⇒ K ⊥⊥ L|M ∪ I [m], whose validity for any mutually disjoint sets
I,K,L,M follows again from semi-graphoid properties, to K = K� \ (K1 ∪ . . .
∪K�−1) \ { j} \ pa( j), M = K� \ (K1 ∪ . . .∪K�−1)∩ pa( j) and I = K� ∩ (K1 ∪ . . .
∪K�−1). As M∪ I = {i < j}\ pa( j) we can then proceed analogous to previous
paragraph to obtain (4). ��

Let us note that it is different than in the case of directed evidential net-
works with conditional belief functions introduced in [3], where is no distinc-
tion between conditionally and unconditionally independent variables, as the
following simple example suggests.

Example 1. Let us consider a sequence of basic assignments m1,m2 and m3,
defined on X1,X2 and X1 ×X2 ×X3. This sequence need not be perfect, in
general, but it is perfect iff

m↓{1,2}
3 (x1,x2) = m1(x1) ·m2(x2).

This perfect sequence induces independence statements 1 ⊥⊥ 2, but generally
not 1 ⊥⊥ 2|3. Using the above-presented algorithm, we can easily obtain the
following graph expressing the same independence statements.

��
��

��
��

��
��

��X1 X3 X2

On the other hand, in [3] the same situation is described by Bel(X1),
Bel(X2), Bel(X3|X1) and Bel(X3|X2) and the joint belief function is com-
puted using conjunctive combination rule. Therefore, in the resulting model
X1 ⊥m X2|X3, which corresponds rather to so-called pseudobayesian networks
than to Bayesian ones.

5 Conclusions

We introduced an alternative approach to evidential network construction to
that presented in [3]. The evidential network is constructed from so-called
perfect sequences of basic assignments through a simple transformation al-
gorithm. We proved that the independence relations in the resulting models
are analogous to those valid in Bayesian networks, while it does not hold
for models introduced in [3]. Due to the limited extent of the paper we are
not able to bring more detailed comparison of these two approaches, but we
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believe that Theorem 3 and Example 1 give the basic idea. Nevertheless, still
one substantial problem should be solved — the choice of a proper condi-
tioning rule compatible with (conditional) independence concept used in our
models. It will be one of the main goals of our future research.
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